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where p denotes  the  rank (over the field of rational  functions)  of G ( s ) ,  
while q ( s )  and $i(s) are monic and coprime. 

Lemma: The blocking  polynomial /3 (s) of G(s) is  given  by B (x)= 
4 s ) .  

Proof: Write 

where N ( s )  is a polynomial  matrix and d(s)  is the least common 
multiple (Icm) of the  denominators of G(s). 

Letp,(s), iEp ,  denote  the  invariant polynomials of N ( s ) .  Then ([IO, p. 
139Dp,(s) is the monic  gcd  of all entries of N ( s ) .  Now since d(s)  has no 
factor  that is common to all entries of N (s), it is clear thatp,(s)=B(s). 

NOW a3,p. 1093) 

and so 
P ( s )  C I b )  

d(s)  $1 (SI . 
-- -- 

Since B (s) and d(s) are coprime,  the  proof is complete. 
From  the lemma, the blocking  zeros are seen to coincide  with the 

roots, counting multiplicities, of q(s) = 0. For the  sake of comparison,  we 
remark that Rosenbrock [3] defines  the zeros of G(s) to  be  the  roots of 
cl(s)cz(s). . c,(s)=O. Desoer and Schulman [ I ]  and Wolovich  [2], 
without  specifying  multiplicities,  identify the  roots of c,(s)=O as the 
zeros of G(s). It is important to note  that  the blocking  zeros introduced 
differ, in general, both in calue and in  multiplicity from these other types 
of zeros.  Thus,  for the example  given  in  (2) the Smith-McMillan form 
can be  calculated to  be 

M (s) = 
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An Eigenvalue  Characterization of Multivariable 
System  Zeros 

K. C.  KALNITSKY AND H. G. KWATNY 

Absrracr-A characterization of multivariable  system zeros as the  com- 
mon  eigenvalues of certain matrices is obtained.  Major  differences  are 
noted between this and  other  approaches,  including  implementation  and 
interpretation of results. In addition,  a  useful  determinantal  identity is 
proven. 

INTRODUCTION 

Determination of zeros via an s-domain  representation is  epitomized 
by the process of obtaining Smith-McMillan  forms.  Such a process is 
cumbersome  for all but  the simplest of systems.  With an eye  towards 
exploiting computer  methods state-space characterization is more con- 
venient for  obtaining numerical  results. 

Consider  the system  described  by 

0 
s3(s2+1)’(s2+3) I 

(s+ 1)’O 
L -I 

and so the zeros of G (s) according to Rosenbrock are 0, 0,  0, 0, +j ,  +j ,  
+ j ,  I! fi j .  The zeros  defined  by  Desoer and  Schulman  (and  also by 
Wolovich) are  also  located  at 0, ? j ,  + f i j  (multiplicity  is not counted). 
The blocking  zeros,  however, are 0, ? j ;  2 fij are not blocking  zeros. 

I t  is easy to see from  the  above discussion that  the blocking  zeros are  a 
subset of the zeros defined in [3] and [4],  of the transmission  zeros 
defined in  [7] and (1  I], and of the  invariant zeros  defined  in [ 111. 

111. CONCLUDIXG REMARKS 

Desoer and  Schulman [ 11 have  shown that if a is a zero of the  transfer 
function matrix, then  there exists an m-vector g#O such that if the input 
of the system  is u(s)= l/(s- a)g, the  mode ear will  not appear in the 
output. We have shown that if a is a blocking  zero, the vector g is 
completely arbitrary. 

Multivariable  system  zeros,  in  general,  play an important role in 
asymptotic tracking  problems. The  importance of blocking  zeros in the 
context of Davison’s problem (see,  e.g.,  [9])  is that in order  to  attain 
asymptotic  tracking  it is necessary that  the  compensator be  designed so 
that  the blocking  polynomial of the  resultant  error transfer function be 
divisible  by the characteristic  polynomial of the signal (and  disturbance) 
modes. This  fact  could  perhaps  be used to further systematize the design 
of tracking  systems. 

where x is an nth-order  state vector, u is an mth-order input vector, y is 
an rth-order  output vector, and the  matrices are of appropriate dimen- 
sions. The problem of calculating the zeros of (1) has recently been 
approached in the state-space domain. 

Among the proposed  alternatives are those  presented as follows. 
1) Bengtsson (as reported in [I]), who  proposes  “computing the eigen- 

values  which are associated  with  those  eigenvectors of ( A  + BL,) whch 
lie within the kernel of C,” where L, is a  state feedback  gain  matrix 
chosen so as  to maximize the  set of closed-loop  eigenvectors  lying  in the 
kernel of C.  

2)  Davison and Wang  [2],  in  which  they  propose computing the 
eigenvalues of the matrix 

where B, C, D are extensions of Bo, C, Do, respectively, and y is a large 
real  valued  scalar. 

3) Kouvaritakis  (as  reported in [l]), who  considers  (for D =O) the 
eigenvalues of the closed-loop  matrix ( A  + B K C )  as IlKll+oo. Davison 
and Wang [2] also  exploit  this notion  and suggest an alternative com- 
putation to 2)  based on  computing the  eigenvalues of ( A  + pBKC) where 
K is an arbitrary  output feedback  matrix of full rank  and p is a  scalar to 
be selected  suitably  large. 

The approach presented  in  this  work  uses the problem formulation of 
Davison and  Wang  to derive some results of Kouvaritakis. A number of 
problem areas  are resolved  via  this  analysis.  Davison and  Wang [2] 
define  a system  zero as any complex scalar X* for which 

S(X*)= [ 
A o - X * I  co Do 
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has rank less than { n+min(m,r)) .  Roper choice of B,  C, and D ensures 
that S ( - )  is a  submatrix of S*(-) and  that S*(-) is square. Furthermore, 
for large y ,  a  subset of the eigenvalues of S*(y) approach the zeros of 
S@). Implementation of this procedure requires that  a large numeric 
value be  chosen  for y.  The  approach offered in the present paper 
circumvents  the necessity of choosing a large y. This is done  by relegat- 
ing the limiting process to a role which is strictly  analytical in nature. 

The prime motivation behind  the  approach offered by Kouvaritakis 
(as reported in [ I D  is the observation that  for high feedback gains, the 
closed-loop poles of multivariable systems approach  the open-loop zeros 
[3] .  The results can be stated in two parts  depending upon the rank of 
the  product matrix of [ C@ J. If [ C@ J has full rank, then the results of 
this approach  are the same as presented in  part I,of Theorem 1 below. If 
[ C@ J has less than full rank, then the  situation is far  more complex and 
the results of Kouvaritakis as reported i n  [ l ]  are incomplete. In [A, [SI, 

. Kouvaritakis  and  MacFarlane provide the necessary extension and their 
results  are equivalent to  part 2 of Theorem 1 below. The principal 
contribution of this note is a  more  compact  development of these results 
based  on an elaboration of the device of Davison and Wang described 
above. 

The main results of this correspondence are highly dependent  upon  a 
determinantal  identity presented in Theorem 2. This identity is primarily 
useful in expressing a special class of determinants  in terms of the 
eigenvalue problem. 

The  remainder of this correspondence is devoted to  presentation  and 
proof of the  main results. 

MAIN RESULTS 

Consider  the  problem of determining  the zeros of the minimal system 
defined by (1). Rosenbrock [4] has shown that this can be done  as 
follows: 

1) Define the system matrix 

2 )  Define the (n  + K )  X (n  + K )  minors 

where K is the largest integer such that a nonzero IPc,,=l exists, and iK,jK 
denote  one set of all possible sets of K rows of C, and D, and K columns 
of Bo and D ,  respectively. 

3) The zeros of the system P ( s )  are the zeros of the monic greatest 
common divisor of all the nonzero  minors 1PkjJ, Le., those  zeros that  are 
common  to all of these minors. 

It is clear that the crux of the problem lies in the need to find the zeros 
of a collection of (n  + K )  X (n  + K )  minors of the form described in (2). A 
solution  to this problem is given  by the following. 

Let the ( n  + K )  X (n  + K) system  be defined by 

SI (s)= [ ;--"In E ]  
where B and C have full c o l u m n  and row rank K ,  respectively. In 
general, i.e., D +  0, there exist unimodular matrices such that [5,  p. 401 

where R,DR2= [ "1 and D l '  exists (if D $0); 
0 0  

[ B R 2 1 = [ B l  B21, [ R , C I ' = [ C ;   C ; ]  

K = p + K ~ ,  and p and K~ are  not simultaneously zero. 

For any n X K matrix B and ux n matrix C, n > IC, the following 
definitions  are made.  Let C* be a right inverse of C and B* a left inverse 
of B.  The matrices A,, q,, Q,, and A,, q,, 9, are defined as follows: 

A, is the n X (n - K )  matrix composed of the n - K Linearly 
independent columns of [ I -  BB*] 

A, is the (n  - K )  X n matrix composed of the n - K linearly 
independent rows of [ I -  P C ]  

Theorem I :  The zeros of the matrix Sl(s), defined above, may be 

I )  If rank[C,BJ=K,,  the zeros of SI(-") are the roots of 
obtained as follows. 

~ A 4 - s z ~ ~ K l ~ = o   ( 3 )  

where - 
KI n-Kl 

' k ~ ' [ A - B , D ; ' C , ] ' k ~ ' =  AI  :: ] : ' K I .  

2) If rank[C2Bz]=v<~l,  the zeros of Sl(s) are  the zeros of the 
reduced matrix 

where 

f l  -2KI + Y K1 - Y 

f l -2K I+Y  [: 51 = U,A4u2 

K l -  Y 

and U,, U, are  unimodular  transformations such that 

~ l ( ~ 8 2 2 ~ C 2 2 ) ~ 2 = ~ a g ( ~ . - 2 . 1 + " , 0 . , - p , r , - ~ ) .  

Special cuses: 1) K~ =0, i.e., D =  Dl  The rank test on [C2BJ is 
eliminated and 

A4=[A - B D  - I C ] .  

2) p=O, i.e.. D = O .  
The criteria above  are  computed by replacing 

B,+B,C,+C and [ A - B I D ; ' C l ] + A .  

Thus,  the zeros of a system  have  been characterized in (3) as eigenvalues 
of a matrix. 

The following theorem provides the key element in the proofs p r e  
sented in the next section. 

Theorem 2: Let A,, B,  and C, be  dimensioned as in ( I ) .  Then for any 
scalar X P 0, 

(5) 

Proofs: Proof of Theorem 2 relies upon  Theorem 3. 
Theorem 3; Let Bo and C, be dimensioned as in (1). Then for any 

scalar AZO (m = r )  

X ( " - " ' I X I n +  B,C,I = I X I , +  C@,I. (6 )  

The proof is  given  by Plotkin 161. 
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Proof of Theorem 2: Choose a  scalar E (possibly  zero) so that 

l A o ~ l = I A ~ + c Z n l f O .  

Then 

det{AolA~l}det(hAol+BoCo}=det{Aol~AIn+A~lBoCo~} 

thus, 

h"lAol+ ~ B o C o ~ = ~ A o l ~ X ~ " ~ " ~ d e t  1 { A I m +  C,,AGIBo} (7) 

where the right-hand  side of (7) yields (5) upon  noting  that 

A,'= 
adjAol 

and 

€+O 
limA,,=A,. 

This completes the proof. 

generalized. 
The proof of Theorem 1 is  presented first for the case D =O, and  then 

Proof of Theorem 1: For D =O, define (for €PO) 

and  note  that 

where the  last equality  follows from (5). 
Now  note  that 

=det ( + , I [  ( A  - fBC)-sIn]'4',l) 

Observe that the n -  K row space of e,, is orthogonal to the K dim 
column space of B,  and the n - K dim column  space of eC2 is orthogonal 
to the K dim row space of C. It follows that  the  rank deficiency of 
gB2Qc2 must  be the same as the  rank deficiency of CB. Therefore, if 
rank(CB)= Y < K, there  exist unimodular  transformations U,, U, such 
that 

In conclusion, 

where 

Thus proving the  theorem  for D EO. 

D $0 is established. The definition of S ( c )  is as follows: 
In  a completely analogous  manner  the proof for the general  case 

in  which  case  (8a)  becomes 

€+O limS(E)= €-+O lim [ r X ~ / D l ~ d e t [ ( A - B l D ~ 1 C l - ; B 2 C 2 ) - s I ~ ] ) .  1 (8b) 

The remaining  steps  follow  by  using  direct  association of (8b)  with (sa). 
The case of D nonsingular does not involve the limiting  process at all. 

Direct  expansion of the  resulting S,(s) followed  by application of ( 5 )  
yields the result stated in  special  case I ) .  

This completes the proof. 

CONCL~~SIONS 

Theorem 1 provides a means for  computing  the zeros of the  matrices 
PikJ, of (2)  by  presenting  this  calculation as an eigenvalue  problem. 
Thus, it can be used as  the basis  for an algorithm to  determine the  zeros 
of a minimal  system, and which  is structured in accordance with 
Rosenbrock's  suggested procedure  outlined above. 

The procedure presented  here avoids the  need to deliberately  in- 
troduce large numbers  into the actual  computation as is done in [2] .  
IIowever, the scheme does require  the (possible)  calculation of elgenval- 
ues of more than  one subsystem.  whereas  in [2],  only one such  calcula- 
tion  need be made for a system of order at least as large.  Since it is  also 
required to find  the intersection of sets of eigenvalues, a tolerance  must 
be  defined  in order  to limit the zero candidates further. The final  test is 
the  rank  test on P ( s )  upon substituting  a zero candidate for s. This  latter 
test is also needed in the  algorithm of [2] .  

The formulation of Davison and  Wang [2] is  used as a  starting  point 
for the proof of Theorem 1 above. This  approach leads to  a  rather 
compact  and unified  development of results  previously reported by 
Kouvaritakis  and  MacFarlane [l], [7], [8]. 
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On Eigenvectors of the Canonical Matrix for 
Multiple-Input  Controllable Systems 

TSUTOMU MITA AND HIRO ARAKAWA 

Abstruct-lbe explicit forms of the eigenvectors of the canonical matrix 
for controllable  multiinput systems and the transformation matrix achiev- 
ing the  diagonal  matrix are presented. 

I. INTRODVCTTON 

The  transformation  from  the single-input  controllable canonical 
matrix (the  companion matrix) to  the  diagonal matrix can be performed 
using the  Vandermonde matrix [4]. This is  readily understood since the 
ith eigenvector of the  companion matrix is given  by the form 
(1, r,,r,?,- . . ,r:-l)T where r, is the  ith eigenvalue. This transformation is 
used  in  many situations:  for example, education of control theory, 
establishing some theorem, modal analysis, and so on. 

In recent  years, the  canonical matrix for multiple-input controllable 
(multiple-output  observable)  systems has been  discussed [IH3]. How- 
ever, the  corresponding  transformation matrix has  not appeared. 

This  correspondence shows  the  explicit forms of the eigenvectors of 
this  canonical matrix and gives the  transformation matrix. 

11. RESULT 

Consider the following canonical matrix [2) for the controllable  sys- 
tems with m inputs 

where 

0 

k , = l ,  /ci= n j + 1 ( i > 2 ) ,  n =  C 5. 
i -  I rn 

j =  I i =  I 

The following  lemma is  well known. 
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Lemma 1 [2], [3]: There exist  some unimodular matrices V ( s )  and 
U ( s )  such that 

where 

namely, (51- A )  and D ( s )  have the  same  invariant polynomials  except 
n - m ones which are  equal  to unity. 

Here we assume  that (sZ - A )  has p invariant  polynomials 
ql(s),q2(s),. . . , qp ( s )  such that they are  not  equal  to unity and q i+I ( s )  
divides qi(s). Then  there exist  two unimodular matrices L(s) ( m  X m) and 
R (s) (m X m )  which  satisfy 

L(s)D(s)R(s)=diag(l ;.., I.g(s),q,-,(s),....q,(s))=S(s) (3) 

where S(s) is the Smith form of D ( s ) .  Note  that m > p  [3] and 

l ~ ( s ) l = I s Z - A J = ~ ~ ( ~ ) . q p - ~ ( S ) . . . q l ( S ) .  (4) 

At the outset we consider the case p = 1  and assume ri (i = 1 - n )  to be 

Lemma 2: Let w ( s ) ( m x  1) be the last column vector of R(s) .  Then 
the eigenvalues of A .  Then  the following  lemma  is  established. 

w(s)  satisfies 

D (ri)w(r , )  =O, (for all ri). ( 5 )  

Proof: Since 1L(s)l=constant+O, from (3). we obtain D ( r i ) R ( r i ) =  
L-I(ri)S(ri)  and the last column of L-' (r i )S(r i )  is 0 for all ri since 
ql(ri)=lriZ- AI=O. Therefore, if the  last  column  vector of R ( s )  is  de- 
fined  as +), this w ( ~ )  satisfies (5). Q.E.D. 

The following main theorem is then established. 
Theorem I :  1) The eigenvector zi associated  with the eigenvalue ri is 

given  by 

where ?(Ti) is the j th  component of the Vector w(ri). 2) If the 
eigenvalues are distinct, 

T-'AT=diag(r,,r,;.. , rn)  (7) 

is achieved  where 

T=(r,,r,; . . ,fJ 


